Potential role of the N-MYC downstream-regulated gene family in reprogramming cancer metabolism under hypoxia

نویسندگان

  • Ga Young Lee
  • Yang-Sook Chun
  • Hyun-Woo Shin
  • Jong-Wan Park
چکیده

Metabolic reprogramming toward aerobic glycolysis and lactate fermentation supplies cancer cells with intermediate metabolites, which are used as macromolecule precursors. The oncogene MYC contributes to such aerobic metabolism by activating the expression of numerous genes essential for glycolysis and mitochondrial biogenesis. However, to survive and evolve in a hypoxic tumor milieu, cancer cells must revise MYC-driven metabolism because the mitochondrial respiratory chain provides free electrons to generate oxygen free radicals with inefficient production of ATP due to oxygen depletion. Instead, hypoxia-inducible transcription factor hypoxia-inducible factor 1 (HIF-1) takes over the role of MYC in glycolysis, but suppresses mitochondrial biogenesis and activity to protect cells from such threats. Recently, the N-MYC downstream-regulated gene (NDRG) family has received attention as potential biomarkers of cancer prognosis. NDRGs are repressed MYC-dependently in various cancers, but induced under hypoxia because HIF-1 directly activates their promoters and indirectly de-represses them by antagonizing MYC. In this review, we summarize the current understanding of the reprogramming of cancer metabolism via the counterbalance between MYC and HIF-1, and discuss the proven and putative roles of the NDRG family in adjusting cancer metabolism according to the ambient oxygen level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N-myc downstream regulated gene 2 overexpression reduces matrix metalloproteinase-2 and -9 activities and cell invasion of A549 lung cancer cell line in vitro

Objective(s):N-myc downstream regulated gene 2 (NDRG2) is a candidate gene for tumor suppression. The expression of NDRG2 is down-regulated in several tumors including lung cancer. The aim of this study was to explore the effect of NDRG2 overexpression on invasion, migration, and enzymatic activity of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) in human lung adenocarcinoma A549 cells.  Ma...

متن کامل

Synergistic Effects of NDRG2 Overexpression and Radiotherapy on Cell Death of Human Prostate LNCaP Cells

Background: Radiation therapy is among the most conventional cancer therapeutic modalities with effective local tumor control. However, due to the development of radio-resistance, tumor recurrence and metastasis often occur following radiation therapy. In recent years, combination of radiotherapy and gene therapy has been suggested to overcome this problem. The aim of the current study was to e...

متن کامل

The Effects of NDRG2 Overexpression on Cell Proliferation and Invasiveness of SW48 Colorectal Cancer Cell Line

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-related death in the world. The expression of N-myc downstream-regulated gene 2 (NDRG2) is down-regulated in CRC. The aim of this study was to investigate the effect of NDRG2 overexpression on cell proliferation and invasive potential of SW48 cells.Methods: SW48 cells were transfected with a plasmid overexpressing ND...

متن کامل

Effect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.

Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...

متن کامل

N-myc downstream regulated 1 gene and its place in the cellular machinery.

The exact function of the protein product of N-myc downstream regulated 1 gene (NDRG1) is unclear. Depending on the tissue type the NDRG1 protein is localized in the cytoplasm, nucleus, mitochondrion or membranes. Moreover, the expression of NDRG1 may be altered by several factors such as hypoxia, heavy metals, DNA damage, hormones, oncogene, and tumor-suppressor genes. A number of studies emph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016